# Preparation and dielectric characterization of BaLaAlO<sub>4</sub> ceramics

Y. J. Liu · X. M. Chen · Y. Xiao

Published online: 13 September 2007 © Springer Science + Business Media, LLC 2007

Abstract In the present work,  $BaLaAlO_4$  ceramics with orthorhombic structure similar to  $K_2SO_4$  in space group  $P2_12_12_1$  were prepared by a solid state sintering process. The dense  $BaLaAlO_4$  ceramics with minor amount of secondary phase have a low dielectric loss and a temperature stable dielectric constant with obvious frequency dependence. A dielectric constant around 15 was obtained at 12 GHz in the present ceramics together with a Qf value over 5,000 GHz.

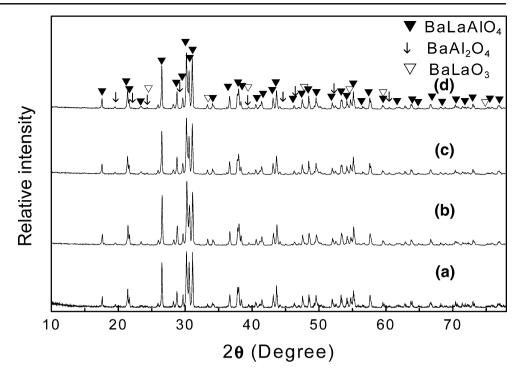
Keywords  $BaLaAlO_4 \cdot Microwave dielectric properties \cdot Ceramics \cdot Sintering \cdot Microstructures$ 

#### **1** Introduction

Recently, a group of compounds with general chemical formula ABCO<sub>4</sub> (A=Ca or Sr; B=Y, La, Nd or Sm; C=Al or Ga) and tetragonal  $K_2NiF_4$ -type structure within space group I4/mmm have attracted much scientific attention because of their potential applications as substrates for high-T<sub>c</sub> superconductor thin films [1–10]. In the author's group, SrRAIO<sub>4</sub> (R = La, Nd, Sm) and CaRAIO<sub>4</sub> (R = Nd, Sm, Y) ceramics have been systematically investigated for microwave resonator application, and the best microwave dielectric characteristics were obtained in SrSmAIO<sub>4</sub> among these ceramics [11–13].

On the other hand, compounds with the similar compositions of  $BaRAIO_4$  and  $BaRGaO_4$  (R = rare earth elements)

Y. J. Liu • X. M. Chen (⊠) • Y. Xiao Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China e-mail: xmchen@cmsce.zju.edu.cn are not tetragonal with  $K_2NiF_4$  structure, but orthorhombic structure similar to  $K_2SO_4$  in space group  $P2_12_12_1$  [8,14]. It is an interesting issue to investigate the dielectric properties of BaRAlO<sub>4</sub> and BaRGaO<sub>4</sub>.


In the present work,  $SrLnAlO_4$  (Ln = Nd and Sm) ceramics are prepared by the solid state reaction method, and the microwave dielectric properties are characterized together with the microstructures.

### 2 Experimental procedure

BaLaAlO<sub>4</sub> ceramics were prepared by a solid-state reaction process using reagent-grade BaCO<sub>3</sub> (99.93%), La<sub>2</sub>O<sub>3</sub> (99.99%), and Al<sub>2</sub>O<sub>3</sub> (>99.98%) powders as the raw materials. The weighed raw materials were mixed by ball milling with zirconia media in distilled water for 24 h, and the mixtures were heated at 1350 °C in air for 6 h after drying. The calcined powders, with 6 wt% of PVA added, were pressed into disks measuring 12 mm in diameter and 2–6 mm high and then sintered at 1350 °C–1550 °C in air for 3 h. After cooling from the sintering temperature to 1100 °C at a rate of 2 °C/min, the ceramics were cooled inside the furnace.

Ground and thermal-etched surfaces of the sintered samples were observed by scanning electron microscopy (SEM), and the crystal phases were determined by powder x-ray diffraction (XRD) using Cu-K $\alpha$  radiation after crushing and grinding. Dielectric properties were first measured at 10, 100 kHz and 1 MHz by an LCR meter (HP4284A) in the temperatures range of  $-50\sim100$  °C, and then the microwave dielectric constant  $\varepsilon$  and quality factor Q (the inverse of dielectric loss, tan $\delta$ ) were evaluated around 10 GHz using the resonator method [15]. Because Q factor generally varies inversely with the frequency, in the

Fig. 1 XRD patterns of BaLaAlO<sub>4</sub> ceramics: (a) powders calcined at 1350°C in air for 6 h,(b) sintered at 1475 °C in air for 3 h, (c) sintered at 1500 °C in air for 3 h and (d) sintered at 1525 °C in air for 3 h



microwave region, the product of Qf was used to evaluate the dielectric loss instead of Q.

#### **3** Results and discussion

XRD patterns of BaLaAlO<sub>4</sub> ceramics are shown in Fig. 1. BaLaAlO<sub>4</sub> major phase is observed together with minor amount of BaAl<sub>2</sub>O<sub>4</sub> and LaAlO<sub>3</sub> secondary phases. With varying sintering temperature, no significant difference can be distinguished in XRD patterns. The highest bulk density of 5.4718 g/cm3 was obtained in the samples sintered at 1500 °C in air for 3 h.

SEM micrographs on fractured surfaces of  $BaLaAlO_4$  ceramics are shown in Fig. 2, which display the microstructure varying with sintering temperature. The grain growth can be obviously observed. When sintered at 1475 °C, some grains are still cuboids distinct from the ground grains. The grains grow more integrated and bigger as the sintering temperature increases.

Figure 3 gives the frequency dependence of dielectric characteristics of BaLaAlO<sub>4</sub> ceramics sintered at various temperatures. Both dielectric constant and dielectric loss show the frequency dependence, and they tend to be stable as the frequency is above 10 kHz. Sintering temperature has a significant influence on dielectric characteristics. Dense BaLaAlO<sub>4</sub> ceramics show a higher dielectric constant around 18. Sintering temperature shows significant effects on the frequency dependence of dielectric characteristics in BaLaAlO<sub>4</sub> ceramics, the strongest frequency dependence is determined in the BaLaAlO<sub>4</sub> ceramics sintered at

1525 °C, which may be resulted from the over sintering. Moreover, the dielectric constant is temperature stable between -40 and 100 °C, and the temperature dependence of dielectric constant increases with decreasing frequency (see Fig. 4).

The microwave dielectric properties of  $BaLaAlO_4$  ceramics sintered at different temperatures are listed in Table 1. At microwaves, a dielectric constant around 15 is observed, which is much lower than that at 1 MHz and lower frequencies, while the dielectric loss is much higher. The Qf value is 5,000 GHz at 10.5 to 12.5 GHz, and the best one is 5,259 GHz for  $BaLaAlO_4$  ceramics sintered at 1500 °C.

Compared with SrLaAlO<sub>4</sub> ( $\epsilon$ =17.1, tan $\delta$ =0.00035, Qf=30770 GHz),SrSmAlO<sub>4</sub> ( $\epsilon$ =18.8, tan $\delta$ =0.00016, Qf= 54880 GHz), SrNdAlO<sub>4</sub>( $\epsilon$ =17.8, tan $\delta$ =0.00040, Qf= 25700 GHz) and CaNdAlO<sub>4</sub>( $\epsilon$ =18.1, tan $\delta$ =0.00064, Qf=16855GHz) [11, 13], the Qf and  $\epsilon$  values of BaLaAlO<sub>4</sub> ceramics are much lower than that for SrRAlO<sub>4</sub> (R = La, Sm) and CaNdAlO<sub>4</sub> ceramics [5, 8, 13, 16], while the tan $\delta$ is much higher. The great distinctness should result from the apparently different structure.

BaLaAlO<sub>4</sub> has a different structure from most Sr- and Ca-based ABCO<sub>4</sub> compounds. According to literatures [5, 8, 13, 15], Sr- and Ca-based ABCO<sub>4</sub> compounds generally have the tetragonal structure with space group I4/mmm. However, BaLaAlO<sub>4</sub> and BaNdGaO<sub>4</sub> crystal are not tetragonal with CaTiO<sub>3</sub> or K<sub>2</sub>NiF<sub>4</sub> structure, but orthorhombic similar to K<sub>2</sub>SO<sub>4</sub> in space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> [8, 14]. The coordination polyhedrons of both are octahedron and tetrahedron, respectively.

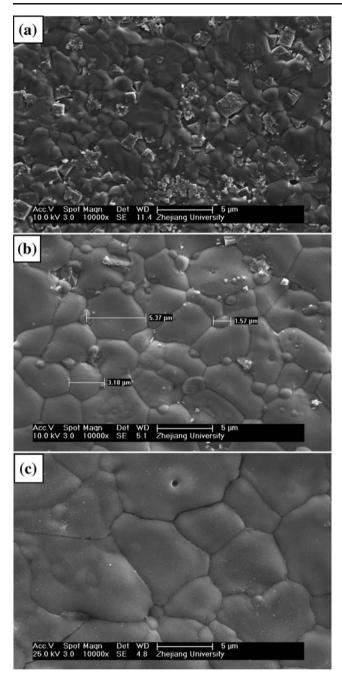



Fig. 2 SEM micrographs of BaLaAlO<sub>4</sub> ceramics sintered at (a) 1475 °C, (b) 1500 °C and (c) 1525 °C in air for 3 h

So in a K<sub>2</sub>NiF<sub>4</sub>-type ABCO<sub>4</sub> crystal cell, all the CO<sub>6</sub> octahedrons have the same orientation, in which C-atoms tend to shift in the same direction when affected by external electric field, making greater polarization and lower dielectric loss. In contrast, CO<sub>4</sub> tetrahedrons in a K<sub>2</sub>SO<sub>4</sub>-type ABCO<sub>4</sub> cell have different orientations and small space, thus it is hard for the C-atoms to behave the same in external electric field. So the displacement of C-atoms in K<sub>2</sub>SO<sub>4</sub>-type is resisted stronger than that in K<sub>2</sub>NiF<sub>4</sub> type. As a result, it is hard for K<sub>2</sub>SO<sub>4</sub>-type ABCO<sub>4</sub> to polarize and therefore the dielectric loss is larger.

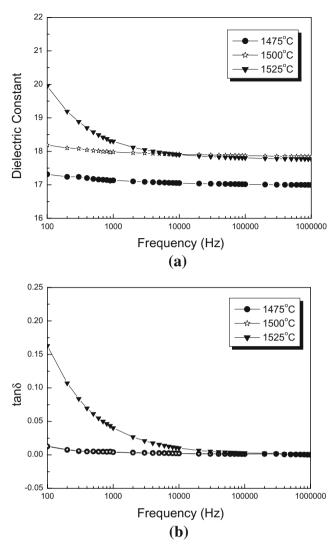



Fig. 3 Frequency dependence of dielectric characteristics of  $BaLaAlO_4$  ceramics sintered at various temperatures: (a) dielectric constant, (b) dielectric loss

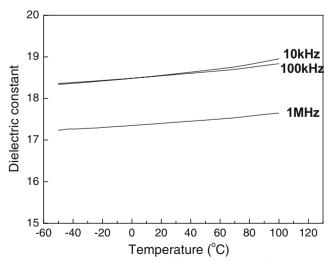



Fig. 4 Temperature dependence of dielectric constant of  $BaLaAlO_4$  ceramics sintered at 1500  $^{\circ}C$  in air for 3 h

| Sintering condition | $f_0$ (GHz) | Ε    | tanδ   | Qf (GHz) |
|---------------------|-------------|------|--------|----------|
| 1475°C/3 h          | 12.57       | 14.2 | 0.0024 | 5,238    |
| 1500°C/3 h          | 11.57       | 15.4 | 0.0022 | 5,259    |
| 1525°C/3 h          | 10.54       | 16.5 | 0.0022 | 4,977    |

 Table 1
 Microwave dielectric characteristics of BaLaAlO<sub>4</sub> ceramics sintered on various conditions.

## **4** Conclusion

BaLaAlO<sub>4</sub> ceramics were prepared by a solid state sintering process, and the major phase with orthorhombic structure similar to  $K_2SO_4$  in space group  $P2_12_12_1$  was observed together with minor amount of BaLaO<sub>3</sub> and BaAl<sub>2</sub>O<sub>4</sub>. A low dielectric loss was determined combined with a temperature stable dielectric constant with slight frequency dependence in the present ceramics, and dielectric constant around 15 was obtained at 12 GHz together with a Qf value over 5,000 GHz. The improved Qf value is expected through the microstructure optimizing especially eliminating the secondary phases.

Acknowledgement This work was partially supported by National Science Foundation of China under grant numbers 50272058, 50332030 and Chinese National Key Project for Fundamental Researches under grant number 2002CB613302.

## References

- 1. S.N. Ruddlesden, P. Popper, Acta Crystallogr. 10(8), 538–539 (1957)
- R. Sobolewski, P. Gierlowski, W. Kula et al., IEEE Trans. Magn 27(2), 876–879 (1991)
- R. Brown, V. Pendrick, D. Kalokitis, B.H.T. Chai, Appl. Phys. Lett. 57(13), 1351–1353 (1990)
- A. Pajaczkowska, P. Byszewski, J. Cryst. Growth 12(1–4), 694– 698 (1993)
- R.D. Shannon, R.A. Oswald, J.B. Parise et al., J. Solid State Chem. 98, 90–98 (1992)
- A. Dabkowski, H.A. Dabkowska, J.E. Greendan, J. Cryst. Growth 132, 205–208 (1993)
- P. Byszewski, J. Domagala, J. Fink-Fionowicki, A. Pajaczkowska, Mater. Res. Bull. 27, 483–490 (1992)
- A. Pajaczkowska, A. Gloubokov, Prog. Crystal Growth Chatact. 36, 123–162 (1998)
- S. Erdei, M. McNeal, S.J. Jang, L.E. Cross, A.S. Bhalla, F.W. Ainger, A. Dabkowski, H.A. Dabkowska, J. Cryst. Growth 174, 324–327 (1997)
- 10. M. Berkowski, J. Alloys Compd. 251, 1-6 (1997)
- X.M. Chen, Y. Xiao, X.Q. Liu, X. Hu, J. Electroceram. 10(2), 111–115 (2003)
- X.Q. Liu, X.M. Chen, Y. Xiao, Mater. Sci. Eng. B. 103(3), 276– 280 (2003)
- Y. Xiao, X.M. Chen, X.Q. Liu, J. Am. Ceram. Soc. 87(11), 2143– 2146 (2004)
- W. Ryba-Romanowski, S. Golab, W.A. Pisarki et al., J Alloys Compd 259, 69–73 (1997)
- B.W. Hakki, P.D. Coleman, IRE Trans. Microwave Theory Tech 8, 402–410 (1960)
- 16. A.E. Lavat, E.J. Baran, J. Alloys Compd. 368, 130-134 (2004)